769 research outputs found

    Electron-Electron Interaction in Linear Arrays of Small Tunnel Junctions

    Full text link
    We have calculated the spatial distribution of the electrostatic potential created by an unbalanced charge qq in one of the conducting electrodes of a long, uniform, linear array of small tunnel junctions. The distribution describes, in particular, the shape of a topological single-electron soliton in such an array. An analytical solution obtained for a circular cross section model is compared with results of geometrical modeling of a more realistic structure with square cross section. These solutions are very close to one another, and can be reasonably approximated by a simple phenomenological expression. In contrast to the previously accepted exponential approximation, the new result describes the crossover between the linear change of the potential near the center of the soliton to the unscreened Coulomb potential far from the center, with an unexpected ``hump'' near the crossover point.Comment: 8 pages, RevTeX 3.0, 4 PostScript figures. To appear in Applied Physics Letters, circa 12 Nov 199

    CMOL: Second Life for Silicon?

    Get PDF
    This report is a brief review of the recent work on architectures for the prospective hybrid CMOS/nanowire/ nanodevice ("CMOL") circuits including digital memories, reconfigurable Boolean-logic circuits, and mixed-signal neuromorphic networks. The basic idea of CMOL circuits is to combine the advantages of CMOS technology (including its flexibility and high fabrication yield) with the extremely high potential density of molecular-scale two-terminal nanodevices. Relatively large critical dimensions of CMOS components and the "bottom-up" approach to nanodevice fabrication may keep CMOL fabrication costs at affordable level. At the same time, the density of active devices in CMOL circuits may be as high as 1012 cm2 and that they may provide an unparalleled information processing performance, up to 1020 operations per cm2 per second, at manageable power consumption.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Quantum phase slip interference device based on superconducting nanowire

    Full text link
    We propose a transistor-like circuit including two serially connected segments of a narrow superconducting nanowire joint by a wider segment with a capacitively coupled gate in between. This circuit is made of amorphous NbSi film and embedded in a network of on-chip Cr microresistors ensuring a sufficiently high external electromagnetic impedance. Assuming a virtual regime of quantum phase slips (QPS)in two narrow segments of the wire, leading to quantum interference of voltages on these segments, this circuit is dual to the dc SQUID. Our samples demonstrated appreciable Coulomb blockade voltage (analog of critical current of the SQUIDs) and periodic modulation of this blockade by an electrostatic gate (analog of flux modulation in the SQUIDs). The model of this QPS transistor is discussed.Comment: 5 pages including 3 figures; in v2 the title was updated, typos were fixed and 4 references adde

    Supercurrent fluctuations in short filaments

    Full text link
    We evaluate the average and the standard deviation of the supercurrent in superconducting nanobridges, as functions of the temperature and the phase difference, in an equilibrium situation. We also evaluate the autocorrelation of the supercurrent as a function of the elapsed time. The behavior of supercurrent fluctuations is qualitatively different from from that of the normal current: they depend on the phase difference, have a different temperature dependence, and for appropriate range their standard deviation is independent of the probing time. We considered two radically different filaments and obtained very similar results for both. Fluctuations of the supercurrent can in principle be measured

    Statistics of voltage fluctuations in resistively shunted Josephson junctions

    Full text link
    The intrinsic nonlinearity of Josephson junctions converts Gaussian current noise in the input into non-Gaussian voltage noise in the output. For a resistively shunted Josephson junction with white input noise we determine numerically exactly the properties of the few lowest cumulants of the voltage fluctuations, and we derive analytical expressions for these cumulants in several important limits. The statistics of the voltage fluctuations is found to be Gaussian at bias currents well above the Josephson critical current, but Poissonian at currents below the critical value. In the transition region close to the critical current the higher-order cumulants oscillate and the voltage noise is strongly non-Gaussian. For coloured input noise we determine the third cumulant of the voltage.Comment: 9 pages, 5 figure

    Quasi-adiabatic Switching for Metal-Island Quantum-dot Cellular Automata

    Full text link
    Recent experiments have demonstrated a working cell suitable for implementing the Quantum-dot Cellular Automata (QCA) paradigm. These experiments have been performed using metal island clusters. The most promising approach to QCA operation involves quasi-adiabatically switching the cells. This has been analyzed extensively in gated semiconductor cells. Here we present a metal island cell structure that makes quasi-adiabatic switching possible. We show how this permits quasi-adiabatic clocking, and enables a pipelined architecture.Comment: 40 preprint-style double-spaced pages including 16 figure

    Magnetic Sensors Based on Long Josephson Tunnel Junctions - An Alternative to SQUIDs

    Full text link
    The properties of Josephson devices are strongly affected by geometrical effects. A loop-shaped superconducting electrode tightly couples a long Josephson tunnel junction with the surrounding electromagnetic field. Due to the fluxoid conservation, any change of the magnetic flux linked to the loop results in a variation of the shielding current circulating around the loop, which, in turn, affects the critical current of the Josephson junction. This method allows the realization of a novel family of robust superconducting devices (not based on the quantum interference) which can function as a general-purpose magnetic sensors. The best performance is accomplished without compromising the noise performance by employing an in-line-type junction few times longer than its Josephson penetration length. The linear (rather than periodic) response to magnetic flux changes over a wide range is just one of its several advantages compared to the most sensitive magnetic detectors currently available, namely the Superconducting Quantum Interference Devices (SQUID). We will also comment on the drawbacks of the proposed system and speculate on its noise properties.Comment: 13 pages, 4 figure

    Possible cooling by resonant Fowler-Nordheim emission

    Full text link
    A new method of electronic refrigeration based on resonant Fowler-Nordheim emission is proposed and analyzed. In this method, a bulk emitter is covered with a-few-nm-thick film of a widegap semiconductor, creating an intermediate step between electron energies in the emitter and in vacuum. An external electric field tilts this potential profile, forming a quantum well, and hence 2D electron subbands at the semiconductor-vacuum boundary. Alignment of the lowest subband with the energy levels of the hottest electrons of the emitter (a few kBTk_{B}T above its Fermi level) leads to a resonant, selective emission of these electrons, providing emitter cooling. Calculations show that cooling power as high as 10^{4} W/cm^{2} (at 300 K), and temperatures down to 10 K may be achieved using this effect.Comment: 4 pages, 2 figure

    Single-Electron Parametron: Reversible Computation in a Discrete State System

    Full text link
    We have analyzed energy dissipation in a digital device (``Single-Electron Parametron'') in which discrete degrees of freedom are used for presenting digital information. If the switching speed is not too high, the device may operate reversibly (adiabatically), and the energy dissipation E{\cal E} per bit may be much less than the thermal energy kBTk_BT. The energy-time product Eτ{\cal E}\tau is, however, much larger than Planck's constant \hbar , at least in the standard ``orthodox'' model of single-electron tunneling, which was used in our calculations.Comment: 9 pages, RevTex, 3 figure
    corecore